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The log a - l og  ~ curves, obtained either during creep or stress-relaxation experiments, 
for different strain levels or initial stresses, frequently show a scaling behaviour. It wil l  
be discussed if the scaling relationship is a sufficient condit ion to ensure the existence of 
a state variable, dependent on o and ~. The results will be applied to some constitutive 
equations used to describe the plastic behaviour of metals and to creep and stress- 
relaxation data in Zircaloy-4. Finally, it is concluded that the constitutive equations 
considered define a state variable in a certain range of a and ~, limited by the values of 
the constants characteristic of the material. 

1. Introduction 
Hart [1,2] and Hart et al. [3] have proposed a 
phenomenological theory of plastic deformation 
based on a plastic equation of state, where each 
deformation state of the material is a unique 
state of plastic hardness that can be characterized 
by a well defined state variable, the hardness. The 
existence of a plastic equation of state, in terms 
of stress, plastic strain rate, temperature and 
hardness, can be tested by performing load 
relaxation experiments, since stress-plastic strain 
rate data are obtained at essentially constant hard- 
ness. According to this theory, the equation of 
state can be written as 

F (o, ~, T, a*) = 0 (1) 

where o is the applied stress, ~ the strain rate, T 
the absolute temperature and o* the hardness. 

Several stress-relaxation log a - l o g k  curves, 
obtained in metals and alloys with different 
crystalline structures, have shown a scaling 
relationship, i.e. the log a - log  ~ curves obtained 
at different hardness, in a given material, can be 

superposed by translations [3,4]. In fact, any 
stress-relaxation curve can be superposed by a 
translation (/',log a, A log ~) onto any of the 
others in such a way that the overlapping segments 
of each curve match within the experimental 
error. The translation path,/J, is given by 

/1 = A log o/A log ~. (2) 

This scaling property has been taken as a proof 
of the uniqueness of the log o- log ~ curves and of 
the existence of an equation of state for the 
materials [3]. 

It is the purpose of this paper to show in what 
conditions Equation 1, if it can be appropriately 
transformed and with the restriction imposed by 
Equation 2, is an equation of state. 

Finally, the results will be applied to some 
constitutive equations, proposed in the literature 
to describe the plastic behaviour of some materials. 

2. Theory 
2.1. Scalar field wi th a scaling behaviour 
Equation l, under isothermal conditions, can be 
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written in general as 

F ( x , y , z )  = 0 (3) 

and, if this equation can be written explicitly as 

y.  = y(x,  z) = g(Ax + Bz)  + ; ( z )  (4) 

where A and B are real constants, g and f are real 
functions which are continuous, single-valued and 
differentiable, it is easy to show that 

y ( x +  Ax ,  z 2 ) - y ( x ,  z,)  = f ( z 2 ) - - f ( z 1 )  (5) 

and 

~y/3xlx, z, = 3y/3xlx+ax, z~ (6) 

where Ax =B(z l  - z 2 ) / A  for all zl and z2. Then, 
for a given Zl and z2, the following functions can 
be defined in the x,y plane: 

y(x, z l )  = g(Ax + BZl) + f(Zl) (7a) 

y(x, z=) = g(Ax + Bz2) + f(z2) (7b) 

Which are related, point to point, by the translation 

Ay = (A/B){[ f (z2)- -  f ( z l ) ] / ( z l  -- zz)}Ax. (S) 

The translation given by Equation 8 depends on 
the values of z and does not describe the experi- 
mental relationship given by Equation 2. If f(z) 
is a linear function, however, i.e. 

f ( z )  = az + b (9) 

where a and b are real constants, then 

Ay = (-- aA/B) A x  (10) 

and the translation path is independent of z. 
By using Equations 4, 9 and 10 it can be 

established whether a relationship of the type 
given by Equation 1 can give, explicitly, a scalar 
field with a scaling behaviour. If so the relation- 
ship allows the slope of the translation path to be 
determined in terms of the constants. 

2.2. The scalar field and the equation of 
state 

The relationship given by Equation 1 is an equation 
of state if any one of the variables is an unique 
function of the others or, which is equivalent, if 
the differential of each variable is a perfect dif- 
ferential [5]. With these conditions, the particular 
case given by Equation 4, which can be written as 

F(x, y, z) = y -- g(Ax + Bz) -- f ( z )  = 0 

�9 ( l l )  

will be analysed. 
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Even if the functions g and f are unknown 
explicitly, it can be assumed that they define a 
function z = q~(x, y)  and the differential 

dz = (3r  dx + (34~/3y)x dy. (12) 

The necessary and sufficient condition for this to 
be a perfect differential is 

3 O 
3y (3cb/3x)y ~x (3r (13) 

and is continuous. By using the change of variables 
u =  A x  + Bz and the theorems for derivatives of 
implicit functions [5], it can be shown that 

(3F/Ox)v,z = _ g' (u)A I 
(O~/Ox)v = -- (3F/3z)x,~, 

[g'(u)B + f '(z)] = -- G(x, y)lH(x, y )  (14a) 

and 

(3r = - (-3F/Oy)x'-z = I/[g'(u)B + f '  (z)] = 
(3F/3Z)x,y 

- M(x, y)/H(x, y). 
Then, 

3 

(14b) 

-- lAB g"(u) f (z )  - A g ' (u ) f " ( z ) l /H 2 (3(~[Oy)~ 

(15) 

The condition of continuity in Equation 13 
implies that H(x, y)  4= O, i.e. 

g'(u)B + f ( z )  =P 0 (16) 

and for the particular case of Equation 9 

g'(u) ~ - -a /B  (17) 

Then, a scalar field with a scaling behaviour will 
be a consequence of an equation of state, unless 
the condition implied by Equation 17 is not  
obeyed. If this is the case, the scalar field will be 
an equation of state only in a restricted domain 
of the variables, where Equation 17 is satisfied. 

3. Applications 
The results of the previous section will be applied 
to some specific constitutive equations, proposed 
in the literature, for the description of the plastic 
behavi0ur of materials. Furthermore, a~ a check 
of the validity of the analysis performed, the 
formalism will be applied to the state equation for 
ideal gases. 



3.1. State equation for ideal gases 
The very well known state equation for ideal gases 

p V  = n R T  (18) 

does not generate a scalar field with scaling 
behaviour. However, if the equation is written as 

l o g p +  log V = log (nR) + log T (19) 

and the variables changed to 

x = logp,  y = l o g V  andz  = l o g T  

(20) 

and on assuming, without loss of  generality, that 
the mass is constant, i.e. 

log (nR) = constant = C (21) 

the result is 

,y(x, z)  = (-- x + z) + C. (22) 

Equations 22 is similar to Equation 4 with 

g(Ax + Bz)  = -- x + z (23a) 

and 

f ( z )  = C (23b) 

where A = - 1, B = 1, a = 0 and b = C. Equation 
10 has infinite solutions in this case. This is 
expected since Equation 22 defines straight lines 
in the x, y plane, for constant z, which are parallel, 
and admit any translation path. Equation 17' 
becomes for this case g ' ( u ) =  1 4= 0 = - a / B  for 
all x and y confirming that no discontinuities are 
present. 

3.2. Hart's phenomenological model 
Hart [2] has proposed a deformation model 
consisting of  essentially two parallel branches. 
At low homologous temperatures, the constant 
hardness log a - l o g  ~ curves are represented by 

O" = O* + ~ r  1/M ~I/M (24) 

where h* is a rate parameter, Jr the anelastic 
modulus and M is a constant. Rearranging Equation 
24 and making the change of  variables x = log o, 
y = log ~ and z = log a* gives 

y = M z - - M l o g  [,.~r 1/M ] + 

M log {exp [(x -- z)/log el -- 1 } (25) 

which is an equation similar to Equation 4 with 

g(Ax + Bz)  = M log {exp [(x - z)/log e] -- 1 } 

(26) 

where A = 1, B = -- 1 and 

f ( z )  = M z - M l o g  [oZd(d , ) uM]  = az + b 

(27) 

where a = M and b = -- M log [,jr VM ]. 

According to Equation 10, the translation path 
is 

Ay  = -- (aA/B) A x  (28a) 

or  

/Xlogo = (1/M) A log& (28b) 

The condition of  continuity, given by Equation 
17, in this case leads to 

exp [ (x - - z ) / loge]  [ O / l o g O - 1  ] ~ -- 1 

(29) 

which is always satisfied for all values of  x and z. 
It is easy to show that this means that two log o -  
log d curves, for different o*, never intersect. 

At high homologous temperatures,  according to 
Hart 's theory, the constant hardness log o - log  
curves can be represented by the flow law 

o = o* exp [--(~*/~)x] (30) 

where X is a constant and b* a rate parameter. 
Rearranging Equation 30 and making the change 
of  variables x = log ~, y = log o and z = log e* 
leads to 

y = z - (log e) exp [(h/log e) (log e* - x)]. 

(31) 

I f  Equation 31 is of  the form of  Equation 4, then 

log~* = m l o g a * + l o g K  (32) 

which is the relationship given by Hart et  al. [3]. 
With this restriction, Equation 31 can be written 
as  

y = z - (log e) exp [(X log K/log e)] 

x exp [X(mz - -x) / log  e] (33) 

Then (Equations 4 and 9) 

g(Ax  + Bz)  = -- (log e) exp [(X log K/log e)] 

x exp [X(mz -- x)/log el (34) 

w h e r e f ( z ) = z , A = - l , B = m , a = l  a n d b = 0 .  
The slopes of  the translation path, given by 
Equation 10, is 

A log a = ( l /m)  A log ~. (35) 

Equation 17, applied to this case, predicts dis- 
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2.2 (o) 
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log E (sec -1) 
Figure 1 Stress-relaxation data, in bending, for cold- 
worked Zirealoy-4, taken from Fig. 3b(C) of [4]- and 
fitted to Equation 30. K = 1.94 • 10 -13 MPa -msec -1. 
The straight line gives the translation path. 

continuities since 

g'(u) = -- X exp [(X log K/log e)] 

• exp [R(mz--  x)/log e] 4= -- 1/m (36) 

which might not be obeyed, for a certain range of  
x and z, if ~ > 0 and m > 0. It can be easily shown 
that this discontinuity means that two curves, at 
constant z (constant u*), have a crossing point in 
the x, y plane given by 

exp [-- (Xx/log e)] = (zl -- z2)/log e 

x exp (Mog K/log e) [exp (Xrnzl/log e) 

-- exp (Xmz2/log e)] (37) 

Some exlberimental creep and stress-relaxation 
curves for cold-worked Zircaloy-4t, reported by 
Povolo and associates [4, 6], will be analysed as an 
example. These data have been interpreted in 
terms of  Equation 30. Fig. 1 shows the crossing 
of  two stress-relaxation curves, measured in 
bending, obtained from Fig. 3b(C) of  [4]. The 
parameters are: ( a )  o* = 520MPa, 4" = 4.25 x 
10 -6 sec-1; (b) 0* = 217.8MPa, 4" = 4.05 x 10 -7 
sec -1. Fig. 2 shows the crossing of  two log o -  
log 4 creep curves, at two different strain levels, 
obtained from Fig. 3 o f  [6]. The parameters are: 
(a) o* = 1847MPa, 4" = 1.76 x 10 -a sec-1; (b) 
o* = 1248MPa, ~* = 8.07 x 10 -s sec -I .  

E 2.6 - y ' y  

/A b 

2A 

2.2 / /  X = 0.085 > 0 

2"/  
2.0 d / i i I 

-9 -7 -5 -3 
[og{  {sec -1) 

Figure 2 Creep data in cold-worked Zircaloy-4, taken 
from Fig. 3 of [8] and fitted to Equation 30. K = 1.93 X 
10-al MPa-m see -1. 

3 .3 .  Bar re t t  and  Nix t h e o r y  
Barrett and Nix [7] have proposed a creep model 
based on the diffusion controlled motion of  screw 
dislocations and the flow law is 

4 = B (~o)" sinh (~o) (38) 

where n is a constant and B and ~ are parameters 
that depend on strain for creep, or on the initial 
stress for stress-relaxation [8], Equation 38 can be 
written as 

y = l o g B + n ( x + y ) +  

log sinh {exp [(x + z)/log e] } (39) 

where x = log o, y = log 4 and z = log c~. 
For Equation 39 to be of  the form of Equation 

4, the following condition must be satisfied 

log B = log C + t3 log ~ (40) 

where C and 13 are constants. Equation 40 has been 
already used by Povolo and Marzocca [8,9].  
Introducing Equation 40 into Equation 39 and 
applying a similar procedure as for Hart's equation, 
gives for the translation path 

Alog  4 = " 3 A  log o (41) 

The condition of  continuity, Equation 17, applied 
to Equati0n 39 gives 

g'(u) = n + coth {exp [(x + z)/log e] } 

x exp [(x + z)/log e] :~ -- 3 (42) 

~Nominal composition (wt %): Sn(1.43), Fe(0.21), Cr(0.1), Zr(balance). 
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Figure 3 Creep data of Fig. 2 fitted to Equation 39. C = 
3.5.5 N 10 -26 MPa#sec -a. 

which shows that there might be crossing points, 
in the l o g o - l o g ~  curves, if (I/31-- n) > 0. The 
crossing point is given by 

log {sinh exp [(x + z2)/log e] / 

sinh exp [(x + zl)/ log e I } = (/3 + n) (z l  -- z2) 

(43) 

As shown by Povolo and Marzocca [8,9] ,  the 
creep and stress-relaxation log o - l o g  ~ curves for 
cold-worked Zircaloy-4 can either be fitted to 
Equation 30 or to Equation 38. 

Fig. 3 shows the creep data of  Fig. 2 fitted to 
Equation 39, with the parameters: (a) a = 10.96 • 
10 -3 (MPa) -1, B = 2.88 x 10 -9 sec-1; (b) s = 
16.22 x 10 -3 (MPa) - I ,B  = 1.32 x 10 -1~ sec -1. 

Fig. 4 shows the stress-relaxation data of  Fig. 
1 fitted to Equation 39, with the parameters: 
(a) s = 2 . 5 1 x  10 -2 (MPa) -a, B = I . 9 5 x  10 -l~ 
sec-1; (b) s = 6 . 5 3 x  10 -2 (MPa) -1, B = 1 . 2 6 •  
10 -11 sec -1. No crossing point is found for stress- 
relaxation since (I/3 f -- n) < 0. 

4. Discussion and conclusions 
The formalism proposed for the analysis of  the 
existence of  an equation of  state, in terms of  three 
variables, has proven to be correct. This is shown 
by the results obtained for the state equation for 
ideal gases and from the fact that some results, 
reported previously in the literature, for con- 
stitutive equations for plastic behaviour have 
been obtained as a consequence of  the general 
formalism. 

2.2 

_ / / / 4 o l  
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1.0 / ~ /  tIN-hi <0  

0.6 ~ ( / /  / I  I I 
-13 -11 -9 -7 

log E (sec -1) 

Figure 4 Stress-relaxation data of Fig. 1 fitted to Equation 
39. C=  1.19 • 10-14MPa#see-~. 

It has been shown that Hart 's equation, for 
low homologous temperatures, can be considered 
as a state equation. A completely different situation 
is found, however, for the constitutive equation 
for high homologous temperatures, even if the 
log o - log  ~ curves, for different hardness, are 
related by scaling. The condition of  continuity, 
in fact, imposes restrictions in the domain of  
application of  Hart 's equation for high homologous 
temperatures. These restrictions are: 

(a) (o*/o) >~ exp (1/Xm) 
(b) (0*/0) ~< exp (1/Xm) 

for all ~. 
It is not clear which one o f  the restricted 

domains should be chosen to describe the plastic 
behaviour, since the experimental data in cold- 
worked Zircaloy-4 shows that the creep curves are 
in domain (a) and the stress-relaxation results in 
(b). The reciprocal description of these two tests 
would be impossible, within this model. The 
condition of continuity, applied to Barrett and 
Nix model, gives the restricted domains: 

(a) (ao) coth (so)~> ( -  n + ]13l) 
(b) (so)  coth (so)  <~ ( -  n + 1/31) 

for all ~. The experimental results in cold-worked 
Zircaloy-4 do not show a restricted domain for 
stress-relaxation but do so for creep. 

Finally, more creep and stress-relaxation data 
are needed to clarify the physical meaning of these 
restriction. 
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